Influence of substrate in the structural disorder of SrSnO₃ thin films deposited by pulsed laser deposition

M.C.F. Alves^{1,2}, S. Députier¹, V. Bouquet¹, E. Longo⁴, G.P.Casali⁴, M. S. Li⁵ I.T. Weber³, A.G. Souza², I. M. G. Santos², M. Guilloux-Viry¹

¹Sciences Chimiques de Rennes, UMR 6226 CNRS/ Université de Rennes 1, France
 ²LACOM/INCTMN, DQ, Universidade Federal de Paraiba, João Pessoa, PB, Brazil
 ³DQF, Universidade Federal de Pernambuco, Recife, PE, Brazil
 ⁴CMDMC-LIEC, Instituto de Química, UNESP, Araraquara, SP, Brazil.
 ⁵Instituto de Física, Universidade Federal de São Carlos, São Carlos, SP, Brazil.

 $MSnO_3$ (M = Ca, Sr, or Ba) perovskites are of particular interest due to their unusual dielectric and semiconducting properties, leading to various applications [1,2]. In this work, SrSnO₃ thin films were prepared by pulsed laser deposition between 600 and 700 °C on amorphous silica and on single crystal substrates (R-sapphire, (100)LaAlO₃ and (100)SrTiO₃). Characterizations were done by X-ray diffraction (θ -2 θ , ω - and ϕ - scans), Scanning Electron Microscopy, Atomic Force Microscopy, Micro-Raman spectroscopy and photoluminescence (PL). According to literature data, Raman spectra of orthorhombic SrSnO₃ shows active modes at 119, 150, 168, 220, 257, 305, 403, 511, 596, 713 and 890 cm⁻¹ [1]. However, the Raman spectra of the SrSnO₃ films obtained in the present work did not present these modes, showing only peaks assigned to the substrates (Figure 1a). We believe that this behavior was related to the high quality of the (100) epitaxial films obtained on LaAlO₃ and SrTiO₃ (Figure1b), which indicated that these materials presented cubic structure, with a high symmetry degree in short and long range. These films did not show PL emission confirming this assignment. Textured films on R-Sapphire and disordered ones on silica did not present peaks in Raman spectra, but exhibited PL emission at about 450 and 500 nm, respectively, indicating that some disorder occurred at short or medium range.

Figure 1: (a) Micro-Raman Spectra of $SrSnO_3$ thin films on different substrates (b) φ -scan XRD pattern performed on (220) $SrSnO_3$ reflection of the film deposited at 700°C on (100)STO. <u>Keywords</u>: perovskite, stannate, thin films, Raman, epitaxial growth

Work supported by CAPES/COFECUB, CDFB/CAPES, INCT/CNPq, PROINFRA/FINEP
[1] W. Zhang, J. Tang and J. Ye, J. Mater. Res. 22, 1859 (2007).
[2] M. K. Mahapatra et al., Adv. Appl. Ceram. 105, 280 (2006).
E-mail: marycfa21@yahoo.com.br. Address: Universidade Federal da Paraíba, CCEN, DQ.
Cidade universitária, João Pessoa, PB, Brazil, CEP 58059-900.