Artigo em destaque: Projetando estruturas para manipular a luz.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder. Melo, EG; Carvalho, DO; Ferlauto, AS; Alvarado, MA; Carreno, MNP; Alayo, MI. Journal of Applied Physics 119, 023107 (2016). DOI: 10.1063/1.4939773.

Projetando estruturas para manipular a luz

Cristais fotônicos são nanoestruturas que possibilitam a manipulação da luz visível e das demais formas de radiação eletromagnética, graças à organização de sua estrutura em padrões periódicos.

Além de haver materiais com essas características na natureza, como a opala, cristais fotônicos são criados pelo ser humano, podendo ser classificados como metamateriais. Suas características (materiais que os compõem, formato, dimensões) são projetadas com o objetivo de se conseguir o controle da luz. Por meio de processos de nanofabricação, essas estruturas se tornam reais e são utilizadas em diversos dispositivos chamados “nanofotônicos”. Todavia, a fabricação dessas estruturas não é tarefa simples.

Os autores do artigo. Da esquerda para a direita, posando no laboratório: professor Marcelo Nélson Paez Carreño, Emerson Gonçalves de Melo, Maria Elisia Armas Alvarado e professor Marco Isaías Alayo Chávez. Nas inserções: à esquerda, Daniel Orquiza de Carvalho e, à direita, André Santarosa Ferlauto.

Com um estudo baseado principalmente em simulações computacionais, uma equipe de cientistas de instituições brasileiras, liderada por pesquisadores da Escola Politécnica da Universidade de São Paulo (EPUSP), gerou contribuições científicas que podem ser utilizadas para melhorar a fabricação de cristais fotônicos de modo a otimizar seu desempenho na manipulação de luz. “O trabalho apresenta uma análise bastante detalhada dos efeitos causados por processos de nanofabricação sobre as características ópticas de cristais fotônicos planares fabricados em nitreto de alumínio com cobertura de dióxido de silício”, diz Emerson Melo, primeiro autor de um paper sobre o trabalho, que foi recentemente publicado no prestigiado periódico Journal of Applied Physics (JAP).

“A ideia surgiu da oportunidade de combinar as excelentes características ópticas e físicas do nitreto de alumínio (AlN), tais como sua transparência em uma grande faixa de comprimentos de onda (do infravermelho próximo ao ultravioleta), seus efeitos não lineares e sua grande estabilidade a variações de temperatura, com as vantagens proporcionadas por cristais fotônicos, como a construção de guias de onda, curvas e cavidades ressonantes de alta eficiência em dimensões nanométricas, além dos diversos efeitos ópticos proporcionados por cristais fotônicos, como baixíssimas velocidades de grupo e intensificação dos efeitos não lineares dos materiais”, conta Emerson, que é estudante de doutorado em Microeletrônica – Fotônica na EPUSP, dentro do Grupo de Novos Materiais e Dispositivos do Laboratório de Microeletrônica do Departamento de Engenharia de Sistemas Eletrônicos. A pesquisa de doutorado de Emerson, cujo orientador é o professor Marco Isaías Alayo Chávez, visa ao estudo, fabricação e caracterização de dispositivos nanofotônicos como guias de onda, cavidades ressonantes, moduladores e chaveadores ópticos em cristais fotônicos de nitreto de alumínio.

O estudo que gerou o paper publicado no JAP iniciou com uma etapa experimental. Filmes finos de nitreto de alumínio e dióxido de silício (SiO2) foram fabricados pelo grupo da EPUSP e, com a colaboração de pesquisadores da UFMG e da UNESP, foram analisados por meio da técnica de elipsometria espectroscópica (VASE) a fim de obter suas funções dielétricas, as quais seriam usadas posteriormente como dados na investigação teórica.

À esquerda, diagrama de uma estrutura de cristal fotônico com alguns dos defeitos de fabricação estudados. À direita, diagrama da célula unitária do cristal fotônico ideal projetado pelos cientistas.

Depois, o grupo da EPUSP projetou um cristal fotônico, ideal em termos de desempenho e de possibilidades de fabricação, composto por uma camada de nitreto de alumínio entre duas camadas de dióxido de silício, com furos redondos dispostos em padrões que se repetem ao longo do “sanduíche”. Usando métodos analíticos e numéricos, os pesquisadores da USP simularam alguns “efeitos colaterais” dos processos de fabricação de cristais fotônicos desse tipo (por exemplo, variações nos tamanhos e posições dos furos) e analisaram teoricamente como essas imperfeições afetariam o desempenho do cristal fotônico.

A investigação teórica de Emerson e os outros pesquisadores da EPUSP concentrou-se nas imperfeições geradas nas duas etapas principais do processo de nanofabricação normalmente empregado em cristais fotônicos como o estudado: litografia por feixe de elétrons e corrosão seca assistida por plasma. “Os resultados apresentados permitem avaliar que o processo de litografia por feixe de elétrons tem maior influência no desempenho de dispositivos que exploram a dispersão da radiação eletromagnética através do cristal fotônico, tais como prismas, chaveadores e moduladores ópticos”, diz Emerson. “Já a qualidade do processo de corrosão seca tem um impacto mais profundo nas características de dispositivos em que são introduzidos defeitos pontuais ou lineares na rede periódica do cristal fotônico para inserir modos harmônicos na banda proibida fotônica. Nesse caso, a corrosão seca deverá ser muito bem controlada para fabricação de dispositivos nos quais guias de onda e cavidades ressonantes encontram-se entre seus principais elementos”, completa.

Além de avançar na compreensão do papel dos processos de nanofabricação de cristais fotônicos no desempenho de dispositivos nanofotônicos, os autores do paper conseguiram definir uma metodologia para projetar cristais fotônicos planares com núcleo e cobertura em filmes finos de materiais dielétricos. “A metodologia inclui o levantamento das funções dielétricas dos materiais através da técnica de elipsometria espectroscópica para a análise dos efeitos de dispersão dos materiais, a obtenção dos parâmetros geométricos que maximizam a banda proibida fotônica e a análise dos impactos causados por desvios introduzidos no processo de fabricação”, detalha Emerson.

A pesquisa teve apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e da Financiadora de Estudos e Projetos (Finep).


Comments

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *