Artigo em destaque: Muita ciência e uma dose de acaso para chegar à receita de um nanocompósito multifuncional.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors. Eduardo G. C. Neiva, Marcela M. Oliveira, Márcio F. Bergamini, Luiz H. Marcolino Jr & Aldo J. G. Zarbin. Scientific Reports 6, 33806 (2016). doi:10.1038/srep33806. Link para o artigo: http://www.nature.com/articles/srep33806

 

Muita ciência e uma dose de acaso para chegar à receita de um nanocompósito multifuncional

boxnioh2Artigo recentemente publicado no periódico científico Scientific Reports, do grupo Nature, reporta um estudo realizado em universidades do estado do Paraná (Brasil) sobre um material baseado no hidróxido de níquel Ni(OH)2 – composto de grande interesse tecnológico [ver box ao lado]. A equipe de autores desenvolveu um método inovador para fabricar um material formado por grafeno e nanopartículas de hidróxido de níquel, fez filmes finos com esse material e demonstrou a eficiência desses filmes quando usados como eletrodos de baterias recarregáveis, sensores de glicerol e materiais eletrocrômicos.

O trabalho foi realizado dentro da pesquisa de doutorado de Eduardo Guilherme Cividini Neiva, sob orientação do professor Aldo José Gorgatti Zarbin, no Programa de Pós-Graduação em Química da Universidade Federal do Paraná (UFPR). Neiva começou a realizar trabalhos de pesquisa sobre nanopartículas de níquel na graduação, orientado pelo professor Zarbin. No mestrado, ainda com Zarbin, o estudante desenvolveu uma rota de preparação de nanopartículas de níquel metálico para aplicações eletroquímicas. Finalizado o mestrado, Neiva e Zarbin se propuseram a dar continuidade à pesquisa no doutorado de Neiva, incluindo o grafeno na preparação das nanopartículas de níquel metálico para obter nanocompósitos de níquel e grafeno com propriedades diferenciadas. “A maior parte dos meus interesses científicos estão voltados na preparação de materiais com nanoestruturas de carbono, como nanotubos e grafeno”, contextualiza o professor Zarbin, que assina o artigo da Scientific Reports como autor correspondente.

Os primeiros trabalhos no laboratório já surpreenderam a dupla. Na presença do óxido de grafeno (usado como precursor do grafeno na preparação do material), o processo tomava um rumo diferente. Nesse momento, Neiva e Zarbin enxergaram o potencial dessas particularidades: se bem compreendidas, poderiam ser controladas e utilizadas para preparar nanocompósitos, não apenas de níquel metálico, mas também de hidróxido de níquel, o que abriria novas possibilidades de aplicação. “Há uma frase que gosto muito, do Louis Pasteur, que se aplica perfeitamente nesse caso: “o acaso favorece as mentes bem preparadas””, diz Zarbin.

Partindo dessa base, orientando e orientador criaram um processo simples e direto para fabricação de nanocompósitos de grafeno e hidróxido de níquel. Nesse processo inovador, ambos os componentes são sintetizados em conjunto, em uma única reação de apenas uma etapa. Usando essa técnica, Neiva fabricou os nanocompósitos. Amostras de hidróxido de níquel puro também foram produzidas, para poder compará-las com os nanocompósitos.

As amostras foram estudadas por meio de uma série de técnicas: difração de raios X, espectroscopia Raman, espectroscopia no infravermelho com transformada de Fourier (FT-IR), termogravimetria, microscopia eletrônica de varredura com emissão de campo (FEG-MEV), e também por meio de imagens de microscopia eletrônica de transmissão (TEM) realizadas pela professora Marcela Mohallem Oliveira, da Universidade Tecnológica Federal do Paraná (UTFPR). A comparação entre os dois materiais foi favorável ao nanocompósito. “O grafeno teve papel fundamental na estabilização das partículas em escala nanométrica, no aumento da estabilidade química e eletroquímica das nanopartículas, e no aumento da condutividade do material, fundamental para uma melhora nas aplicações desejadas”, comenta Aldo Zarbin.

Aldo José Gorgatti Zarbin (à esquerda de quem olha) e Eduardo Guilherme Cividini Neiva, autores principais do trabalho, no equipamento FEG-MEV do Grupo de Química de Materiais da UFPR.
Aldo José Gorgatti Zarbin (à esquerda de quem olha) e Eduardo Guilherme Cividini Neiva, autores principais do trabalho, no equipamento FEG-MEV do Grupo de Química de Materiais da UFPR.

A etapa seguinte consistiu no processamento dos nanocompósitos e das nanopartículas de hidróxido de níquel puro para obter filmes finos, formato que possibilita seu uso nas aplicações desejadas. “Depositar materiais na forma de filmes, recobrindo diferentes superfícies, é um desafio tecnológico imenso, que se torna maior e mais desafiador quando se trata de materiais multicomponentes e materiais insolúveis, infusíveis e intratáveis (todas características do material reportado nesse artigo)”, explica Zarbin.

Para superar esse desafio, Neiva utilizou uma rota de processamento, chamada de método interfacial líquido/líquido, desenvolvida em 2010 pelo grupo de pesquisa liderado por Zarbin, o Grupo de Química de Materiais da UFPR. Essa rota, além de ser simples e barata, afirma o professor Zarbin, permite depositar materiais complexos na forma de filmes homogêneos e transparentes sobre vários tipos de materiais, incluindo plásticos. “Essa rota se baseia na alta energia existente na interface de dois líquidos imiscíveis (água e óleo, por exemplo), onde o material é inicialmente estabilizado para minimizar essa energia, possibilitando sua posterior transferência para substratos de interesse”, detalha o cientista.

Com os nanocompósitos, Neiva obteve filmes finos transparentes de cerca de 100 a 500 nm de espessura, com nanopartículas de cerca de 5 nm de diâmetro homogeneamente distribuídas sobre as folhas de grafeno. O hidróxido de níquel puro, diferentemente, gerou filmes formados por nanopartículas esféricas porosas de 30 a 80 nm de diâmetro, distribuídas de modo heterogêneo, formando aglomerados em algumas regiões.

Na fase final do trabalho, os filmes depositados sobre vidro e ITO (óxido de índio e estanho), foram testados em três aplicações, nas quais o nanocompósito teve desempenho superior ao hidróxido de níquel puro.  Enquanto material para eletrodos de baterias alcalinas recarregáveis, o nanocompósito apresentou alta energia e alta potência – dois pontos positivos que não é fácil encontrar num mesmo material. O nanocompósito também demonstrou uma boa performance como sensor eletroquímico. De fato, experimentos idealizados pelos professores Márcio Bergamini e Luiz Marcolino Jr, também da UFPR, mostraram que o nanocompósito é um sensor sensível de glicerol (composto conhecido comercialmente como glicerina e usado em várias indústrias). Finalmente, o nanocompósito agiu como eficiente material eletrocrômico. Com essas características, os filmes do grupo da UFPR têm chances sair do laboratório e fazer parte de produtos inovadores. “Isso depende de parceiros que se interessem em escalonar o método e testar em dispositivos reais”, diz Zarbin.

Por enquanto, além de artigos científicos como o publicado na revista Scientific Reports, o trabalho gerou várias patentes, tanto sobre o método de deposição dos filmes finos quanto sobre suas aplicações em sensores de gases, eletrodos transparentes, dispositivos fotovoltaicos e catalisadores. “E já desenvolvemos uma bateria flexível, que só foi possível graças à técnica de deposição de filmes que desenvolvemos”, complementa o professor Zarbin.

O trabalho, que foi desenvolvido dentro dos projetos macro “INCT de nanomateriais de carbono” e “Núcleo de Excelência em Nanoquímica e Nanomateriais”, contou com financiamento das agências federais Capes e CNPq, e da Fundação Araucária, de apoio ao desenvolvimento científico e tecnológico do estado do Paraná.

 

Esta figura, enviada pelos autores do paper, condensa as principais contribuições do trabalho. No centro, um balão com dois líquidos e o filme na interface representa o método de processamento de filmes finos. À esquerda consta um esquema do filme, com as nanopartículas de hidróxido de níquel sobre a folha de grafeno. Logo à direita do balão, uma fotografia do filme depositado sobre um substrato de quartzo mostra a homogeneidade e transparência do filme (é possível ler um texto que está debaixo dele). Finalmente, à direita, de cima pra baixo, as três aplicações são mostradas através de uma curva de descarga (bateria), de uma curva de variação de transmitância pelo potencial aplicado (eletrocromismo) e de uma curva analítica mostrando a variação linear da intensidade da corrente em função da concentração de glicerol no meio (sensor).

 


Comments
    • Meu Caro

      É! MAS ELES NÃO VÃO USAR O GRAFENO PRA EMBALAR ALIMENTOS…

      Provavelmente, por ser muito custoso, vão utilizá-lo em equipamentos de alta tecnologia. Alguns dos usos do grafeno, são a condução de energia, 10-n vezes mais rápida a carga de baterias e pilhas de lítio ou outros materiais, transmissão e recepção de dados e de informações mais acelerados (sistemas de informação e de espionagem e outros), microchips e nanochips e outros aparatos tecnológicos bastante avançados e eficientes…

      gomesmota.1000@gmail.com

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *