Artigo em destaque. Origamis nanométricos: deformação organizada de materiais bidimensionais.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Crystal-oriented wrinkles with origami-type junctions in few-layer hexagonal boron nitride. Oliveira, Camilla K.; Gomes, Egleidson F. A.; Prado, Mariana C.; Alencar, Thonimar V.; Nascimento, Regiane; Malard, Leandro M.; Batista, Ronaldo J. C.; de Oliveira, Alan B.; Chacham, Helio; de Paula, Ana M.; Neves, Bernardo R. A. Nano Research. 2015, 8(5): 1680–1688. DOI: 10.1007/s12274-014-0665-y.

Origamis nanométricos: deformação organizada de materiais bidimensionais.

Camilla Oliveira operando o microscópio de força atômica na UFMG.

Camilla Oliveira estava na Universidade Federal de Minas Gerais (UFGM) estudando amostras de nitreto de boro hexagonal (h-NB) com um microscópio de força atômica (AFM), no marco de seu doutorado em Física, quando uma particularidade das amostras controle chamou a atenção dela e de seu orientador, o professor Bernardo Neves. Após passar por um tratamento térmico (annealing), o h-NB tinha ganhado dobras nanométricas dispostas num padrão geométrico que parecia seguir algum tipo de organização.

Os pesquisadores decidiram estudar essas dobras mais detalhadamente. Eles tinham uma pergunta importante para responder: existia alguma relação entre a disposição das dobras e a estrutura cristalina do h-NB?. Em outras palavras, tinham essas dobras uma orientação cristalográfica? Até o momento, não havia registros na literatura científica de materiais bidimensionais com dobras com orientação cristalográfica, mas essa propriedade poderia ser útil.

Rede cristalina do h-NB, bidimensional (1 átomo de altura).

Camilla e seu orientador se uniram a outros cientistas da UFMG e da Universidade Federal de Ouro Preto (UFOP) para realizar a pesquisa. A equipe fabricou amostras formadas por algumas camadas de h-NB ancoradas sobre um substrato de silício e as submeteu a um tratamento térmico consistente em aquecimento a 1.000 °C e posterior resfriamento. Durante esse tipo de processo, o silício e o nitreto de boro apresentam comportamentos opostos entre si com relação à deformação. Em decorrência do aquecimento, enquanto o h-NB se contrai, o silício se expande, esticando o h-NB. Já no resfriamento, o h-NB expande e o silício contrai, dobrando o nitreto de boro como papel de origami.

Depois de muito trabalho experimental usando diversas técnicas e abordagens, e de várias simulações, os cientistas puderam confirmar que as dobras formavam-se em direções bem definidas dentro da rede cristalina. Analisando em detalhe o padrão de dobras, os cientistas repararam nas junções de formato triangular nas quais as dobras (geralmente três delas) se uniam.

Imagens de AFM de: um floco de h-NB de 10 nm de espessura após o tratamento térmico apresentando um padrão de dobras com orientação cristalográfica (esquerda); detalhe de uma típica junção (direita). A altura média das dobras é de 10 nm.

Detalhe: segundo comprovaram os cientistas de Minas Gerais, para que sejam formados padrões de dobras com orientação cristalográfica, o tratamento térmico deve consistir em um aquecimento rápido seguido de um esfriamento lento (por exemplo, citando as taxas usadas na pesquisa, de 50 °C por minuto para aquecer e 8 °C por minuto para resfriar). Taxas de esfriamento mais rápidas produzem dobras dispostas de maneira desordenada e sem orientação cristalográfica.

Os pesquisadores também concluíram que esse tipo de deformação organizada poderia acontecer não apenas com o h-NB, mas também com outros materiais bidimensionais, como o grafeno, e que poderia ter interessantes aplicações na “straintrônica” (straintronics) – área do conhecimento que estuda e explora a condição de alguns materiais de ter algumas de suas propriedades profundamente alteradas em consequência de processos de deformação.

Os resultados do trabalho foram recentemente publicados pelo prestigiado periódico científico Nano Research.

“Na minha opinião, a principal contribuição do artigo é mostrar uma propriedade que pode ser comum a muitos materiais bidimensionais: a deformação organizada, isto é, em direções cristalográficas bem definidas, de um material na escala nanométrica”, resume o professor Neves, que é o autor correspondente do artigo.

A pesquisa contou com financiamento da Capes, CNPq, Fapemig e do INCT-Nanocarbono.


Comments

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *